Molecular switch for alternative conformations of the HIV-1 V3 region: implications for phenotype conversion.
نویسندگان
چکیده
HIV-1 coreceptor usage plays a critical role in virus tropism and pathogenesis. A switch from CCR5- to CXCR4-using viruses occurs during the course of HIV-1 infection and correlates with subsequent disease progression. A single mutation at position 322 within the V3 loop of the HIV-1 envelope glycoprotein gp120, from a negatively to a positively charged residue, was found to be sufficient to switch an R5 virus to an X4 virus. In this study, the NMR structure of the V3 region of an R5 strain, HIV-1(JR-FL), in complex with an HIV-1-neutralizing antibody was determined. Positively charged and negatively charged residues at positions 304 and 322, respectively, oppose each other in the beta-hairpin structure, enabling a favorable electrostatic interaction that stabilizes the postulated R5 conformation. Comparison of the R5 conformation with the postulated X4 conformation of the V3 region (positively charged residue at position 322) reveals that electrostatic repulsion between residues 304 and 322 in X4 strains triggers the observed one register shift in the N-terminal strand of the V3 region. We posit that electrostatic interactions at the base of the V3 beta-hairpin can modulate the conformation and thereby influence the phenotype switch. In addition, we suggest that interstrand cation-pi interactions between positively charged and aromatic residues induce the switch to the X4 conformation as a result of the S306R mutation. The existence of three pairs of identical (or very similar) amino acids in the V3 C-terminal strand facilitates the switch between the R5 and X4 conformations.
منابع مشابه
Correlated mutations at gp120 positions 322 and 440: implications for gp120 structure.
Analysis of V3 and C4 sequences of HIV-1 reveals correlated mutations at gp120 positions 322 and 440, and a very strong preference for a positively charged residue at position 440 when position 322 is negatively charged. This observation suggests that these two residues are close to each other and interact electrostatically in R5 viruses. This interaction was used to model V3 in the context of ...
متن کاملStructural Dynamics of HIV-1 Envelope Gp120 Outer Domain with V3 Loop
BACKGROUND The net charge of the hypervariable V3 loop on the HIV-1 envelope gp120 outer domain plays a key role in modulating viral phenotype. However, the molecular mechanisms underlying the modulation remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS By combining computational and experimental approaches, we examined how V3 net charge could influence the phenotype of the gp120 inter...
متن کاملFold recognition of the human immunodeficiency virus type 1 V3 loop and flexibility of its crown structure during the course of adaptation to a host.
The third hypervariable (V3) region of the HIV-1 gp120 protein is responsible for many aspects of viral infectivity. The tertiary structure of the V3 loop seems to influence the coreceptor usage of the virus, which is an important determinant of HIV pathogenesis. Hence, the information about preferred conformations of the V3-loop region and its flexibility could be a crucial tool for understand...
متن کاملStructure and Dynamics of the gp120 V3 Loop That Confers Noncompetitive Resistance in R5 HIV-1JR-FL to Maraviroc
Maraviroc, an (HIV-1) entry inhibitor, binds to CCR5 and efficiently prevents R5 human immunodeficiency virus type 1 (HIV-1) from using CCR5 as a coreceptor for entry into CD4(+) cells. However, HIV-1 can elude maraviroc by using the drug-bound form of CCR5 as a coreceptor. This property is known as noncompetitive resistance. HIV-1(V3-M5) derived from HIV-1(JR-FLan) is a noncompetitive-resistan...
متن کاملStructural polymorphism of the HIV-1 leader region explored by computational methods
Experimental studies revealed that the elements of the human immunodeficiency virus type 1 (HIV-1) 5'-untranslated leader region (5'-UTR) can fold in vitro into two alternative conformations, branched (BMH) and 'linearized' (LDI) and switch between them to achieve different functionality. In this study we computationally explored in detail, with our massively parallel genetic algorithm (MPGAfol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 38 شماره
صفحات -
تاریخ انتشار 2006